Time-frequency Representations of Wigner Type and Pseudo-differential Operators
نویسندگان
چکیده
We introduce a τ -dependent Wigner representation, Wigτ , τ ∈ [0, 1], which permits us to define a general theory connecting time-frequency representations on one side and pseudo-differential operators on the other. The scheme includes various types of time-frequency representations, among the others the classical Wigner and Rihaczek representations and the most common classes of pseudo-differential operators. We show further that the integral over τ of Wigτ yields a new representation Q possessing features in signal analysis which considerably improve those of the Wigner representation, especially for what concerns the so-called “ghost frequencies”. The relations of all these representations with respect to the generalized spectrogram and the Cohen class are then studied. Furthermore, a characterization of the Lp-boundedness of both τ -pseudo-differential operators and τ -Wigner representations are obtained.
منابع مشابه
Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملModulation Spaces, Harmonic Analysis and Pseudo-differential Operators
The (classical) modulation spaces, as introduced by Feichtinger during the 80’s, consist of all tempered distributions whose short-time Fourier transforms (STFT) have finite mixed (weighted) Lebesgue norm. By choosing the Lebesgue parameters and weight functions in appropriate ways, one may quantify the degrees of asymptotic decay and singularity of the distributions in a ”detailed way”. A majo...
متن کاملRemoving interference components in time-frequency representations using morphological operators
Time-frequency representations have been of great interest in the analysis and classification of non-stationary signals. The use of highly selective transformation techniques is a valuable tool for obtaining accurate information for studies of this type. The Wigner-Ville distribution has high time and frequency selectivity in addition to meeting some interesting mathematical properties. However...
متن کاملIntegral Representations of Affine Transformations in Phase Space with an Application to Energy Localization Problems
Applying the fractional Fourier transform and the Wigner distribution on a signal in a cascade fashion is equivalent with a rotation of the time and frequency parameters of the Wigner distribution. This report presents a formula for all unitary operators that are related to energy preserving transformations on the parameters of the Wigner distribution by means of such a cascade of operators. Fu...
متن کاملproperties of M−hyoellipticity for pseudo differential operators
In this paper we study properties of symbols such that these belong to class of symbols sitting insideSm ρ,φ that we shall introduce as the following. So for because hypoelliptic pseudodifferential operatorsplays a key role in quantum mechanics we will investigate some properties of M−hypoelliptic pseudodifferential operators for which define base on this class of symbols. Also we consider maxi...
متن کامل